
Linux is an open-source community that focuses on sharing power and responsibility among people
instead of centralizing within a select group. The Linux kernel – which acts as the foundation for
many Linux-based distributions – is built on an even older framework that matured alongside
computers.

Unix was a general-purpose operating system that began to take shape in the mid-1960. This was
a collaborative project between the Massachusetts Institute of Technology, Bell Labs, and General
Electric. Academic researchers within the burgeoning computer science field experimented with
the potential for time-sharing to innovate what was possible with these new digital machines.

An Open Ecosystem

The PDP-7 ran the first Unix code – used for creating the demo video game Space Travel.

An Accidental Movement

https://hub.subspace.services/uploads/images/gallery/2025-05/1000000479.jpg
https://hub.subspace.services/uploads/images/gallery/2025-05/1000000480.png
https://en.m.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.m.wikipedia.org/wiki/Bell_Labs
https://en.m.wikipedia.org/wiki/General_Electric
https://en.m.wikipedia.org/wiki/General_Electric
https://en.m.wikipedia.org/wiki/Time-sharing
https://en.m.wikipedia.org/wiki/PDP-7
https://en.m.wikipedia.org/wiki/Space_Travel_(video_game)

Unix itself was based on an even older exploration in computers – an operating system called
Multics. Pronounced as "eunuchs", the name itself was intended as a pun on it's predecessor.
Multics had yielded truly innovative ideas, but it's exploratory nature didn't yield immediate profit
potential.

The original AT&T Unix – created in 1969 – was a proprietary and closed-source operating system
first investigated by Bell Labs. As the result of a result of a 1958 ruling by the US Department of
Justice, AT&T was forbidden from entering into the computer business under consent decree. This
was a part of the larger breakup of the Bell systems that continued through the 1980s.

What we wanted to preserve was not just a good environment in which to do
programming, but a system around which a fellowship could form. We knew
from experience that the essence of communal computing, as supplied by
remote-access, time-shared machines, is not just to type programs into a
terminal instead of a keypunch, but to encourage close communication.

— Dennis Richie, UNIX pioneer

“

https://hub.subspace.services/uploads/images/gallery/2025-05/1000000452.png
https://en.m.wikipedia.org/wiki/Research_Unix
https://en.m.wikipedia.org/wiki/Multics
https://en.m.wikipedia.org/wiki/Eunuch
https://hub.subspace.services/uploads/images/gallery/2025-05/1000000461.png
https://en.m.wikipedia.org/wiki/AT%26T_Corporation
https://en.m.wikipedia.org/wiki/Bell_Labs
https://historyofcomputercommunications.info/section/2.13/Antitrust,-Computer-Inquiry-II-and-the-Break-up-of-AT&T-1973-1984/
https://en.m.wikipedia.org/wiki/Breakup_of_the_Bell_System
https://en.m.wikipedia.org/wiki/Computer_programming
https://en.m.wikipedia.org/wiki/Time-sharing
https://en.m.wikipedia.org/wiki/Computer_terminal
https://en.m.wikipedia.org/wiki/Keypunch
https://en.m.wikipedia.org/wiki/Dennis_Ritchie

This meant that AT&T was required to license it's non-telephone technology to anyone that asked.
While Unix was intended for use within their labs, they began licensing it to colleges and
corporations for a modest fee. This lenient licensing scheme played an important part in the
widespread adoption of Unix and the eventual open-source movement.

During the early days of computers, programmers and researchers were one and the same. While
developing programming languages like C – the backbone of Unix – we were also exploring what
computers could accomplish for the first time. To that end, it was common to share software and
learn from each other while studying computing.

Unix was revolutionary not only as an operating system, but because it came bundled with a
complete copy of the source code used to build it. This allowed researchers to modify the code to
fulfill their needs while also enabling corporations to create their own custom Unix distributions –
for use in-house or as a marketable product. This led to a proliferation of Unix operating systems,
each with exciting new features.

Windows vs Mac vs Linux vs Unix timeline graphic

Cathedral and the Bazaar

Cathedral and the Bazaar was a foundational book by Eric S. Raymond about opposing
software project management styles.

https://hub.subspace.services/uploads/images/gallery/2025-05/1000000462.jpg
https://en.m.wikipedia.org/wiki/C_(programming_language)
https://en.m.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.m.wikipedia.org/wiki/Eric_S._Raymond

https://hub.subspace.services/uploads/images/gallery/2025-05/1000000439.png
https://hub.subspace.services/uploads/images/gallery/2025-05/1000000440.png

Software – like hardware – became increasingly commercialized throughout the 1970s.
Corporations sought to mold hardware into compact personal devices while simultaneously
fashioning software into the killer application that would draw consumers to their products. The
Unix Wars throughout the 1980s exacerbated the friction between vendors as the operating system
became fragmented between multiple competing standards.

As corporations navigated this space, many preferred to follow the proprietary development
model. These release cycles are often measured in years – meaning that software was released as
polished product with meticulous planning put into final 'gold' release. On the flip side, bug fixes
and feature requests could take years to manifest in the publicly available product. Important
software updates may never emerge – or may even be released as part of the product's successor.

This 'release late—release rarely' philosophy arises when the software developers regard their
project as a consumer product. While the product is marketed towards consumers, their role in the
creative process is rather limited. Their feedback is often collected reactively during formative
beta testing – or even after the product is released to the public.

Proprietary software is often "closed-source", meaning that the code to create it is private and
legally protected – or even a trade secret. The code is compiled into a binary file containing the
raw binary data – ones and zeros – used to control a computer system. The information it is not
human-readable and only applies to a specific platform – such as Windows, MacOS or Debian Linux.

This makes it relatively difficult to reverse engineer, but it also means that the code was created to
run efficiently on your specific computer system. The software is compiled towards 'minimum
system requirements' and more advanced hardware is rarely leveraged to your advantage.

https://hub.subspace.services/uploads/images/gallery/2025-05/1000000443.webp
https://en.m.wikipedia.org/wiki/Killer_application
https://en.m.wikipedia.org/wiki/Unix_wars
https://en.m.wikipedia.org/wiki/Software_release_life_cycle#RTM
https://dsbscience.com/freepubs/linuxoverwindows/node3.html
https://dsbscience.com/freepubs/linuxoverwindows/node3.html
https://en.m.wikipedia.org/wiki/Proprietary_software
https://en.m.wikipedia.org/wiki/Trade_secret
https://en.m.wikipedia.org/wiki/Binary_file
https://en.m.wikipedia.org/wiki/Reverse_engineering

During the 1970s, the original computer hacker culture – who enjoyed the creative challenge of
overcoming hardware and software limitations – formed within academic institutions.

It was around this time that the Free Software Movement began to take shape. Researchers
continued to develop software collaboratively by sharing their discoveries and the source code that
powered them. This was foundational to the continued growth of the Unix experiment.

In 1984, Richard Stallman resigned from his position at MIT citing that proprietary software stifled
collaboration by limiting his labs ability to share source code. He began work on the GNU Project –
which stands for GNU's Not Unix – and represented an idealized "free" operating system. It
behaved almost exactly like Unix to attract developers, but the source code would be available for
anyone to modify.

The Free Software Foundation he sparked – through his call-to-action known as the GNU Manifesto
– initially caused some confusion. He often had to explain that he meant "free" as in "freedom" not
as in "beer". This led to the foundation of the movement: the four software freedoms.

Software Freedoms

The word "free" in our name does not refer to price; it refers to freedom. First,
the freedom to copy a program and redistribute it to your neighbors, so that
they can use it as well as you. Second, the freedom to change a program, so
that you can control it instead of it controlling you; for this, the source code
must be made available to you.

— GNU's Bulletin, Volume 1

“

https://en.m.wikipedia.org/wiki/Hacker_culture
https://en.m.wikipedia.org/wiki/Free_software_movement
https://en.m.wikipedia.org/wiki/Research_Unix
https://en.m.wikipedia.org/wiki/Richard_Stallman
https://hub.subspace.services/uploads/images/gallery/2025-05/1000000463.png
https://en.m.wikipedia.org/wiki/Free_Software_Foundation
https://en.m.wikipedia.org/wiki/GNU_Manifesto
https://en.m.wikipedia.org/wiki/The_Free_Software_Definition
https://www.gnu.org/bulletins/bull1.txt

Counter_1 Freedom 1
The freedom to run the program as you wish, for any
purpose.

Counter_2 Freedom 2
The freedom to study how the program works, and change
it so it does your computing as you wish.

Counter_3 Freedom 3
The freedom to redistribute copies so you can help your
neighbor.

Counter_4 Freedom 4
The freedom to distribute copies of your modified versions
to others. By doing this you can give the whole community
a chance to benefit from your changes.

Fulfilling these freedoms required unrestricted access to the underlying source code. Through
GNU, a new decentralized model of development emerged that enabled everyone to contribute bug
fixes, code suggestions and feature requests. Communication took place primarily on internet
newsgroups – one of the first examples of a digital bulletin board.

GNU developed in sharp contrast to proprietary software with many open-source projects following
the 'release early—release often' development philosophy. These software programs are not
generally viewed as a consumer product, but as a tool to reach an end.

While these projects may feel less polished, users have the power to add their voice throughout the
entire development process. This means the potential for bugs to be fixed promptly and –
depending on community feedback – features can be quickly integrated into the ongoing evolution.

The GNU Project is an umbrella for the hundreds of smaller projects that are required to build an
operating system. While developed through collaboration, these constituent projects are often
produced independently of the others.

While lying the foundations for Unix, computer scientists were careful to consider it's design
philosophy. They decided that Unix should provide a simple set of tools – each able to perform
limited function with well-defined parameters. This enabled a modular and decentralized approach
to developing the new operating system.

Modular by Design

https://ieeexplore.ieee.org/document/9233046
https://en.m.wikipedia.org/wiki/Newsgroup
https://en.m.wikipedia.org/wiki/Bulletin_board_system
https://en.m.wikipedia.org/wiki/Unix_philosophy
https://en.m.wikipedia.org/wiki/Unix_philosophy
http://www.catb.org/~esr/writings/taoup/html/
https://en.m.wikipedia.org/wiki/Modular_design

This philosophy disconnected the lifecycle of applications from each other – as well as from the
operating system. This allowed all of the communities surrounding these projects to make their
own decisions about how their software would be developed. There are a myriad combinations of
both competing and complimentary projects.

This can leads to collective communities embracing a core ideology or philosophy. The modular
nature of Unix enabled the operating system and software to run independently.

When there is an error or security vulnerability in a module, the damage is more localized rather
than affecting the whole. This allows you to interact with your computer without a graphical
interface through console command. The Windows graphical interface, by comparison, is heavily
integrated into the Windows kernel. There is functionally no Windows without windows.

GNU Software was released under the GNU General Public License and allowed full use by anyone –
with specific restrictions. This was an early example of a copyleft license which mandated that all
derivative works have a similar license ensuring reciprocity.

By 1989, University of California, Berkeley introduced BSD – or the Berkeley Software Distribution –
and created the first publicly accessible Unix operating system. By rewriting proprietary AT&T Unix
code from the ground up, they released BSD openly to facilitate open collaboration.

They created their own permissive software license that placed barely any restrictions on how you
could use the software, while also providing no warranty. This even allowed proprietization –
meaning it could be used within private, "closed-source" programs.

Licensing

https://en.m.wikipedia.org/wiki/GNU_General_Public_License
https://en.m.wikipedia.org/wiki/Copyleft
https://hub.subspace.services/uploads/images/gallery/2025-05/1000000262.jpg
https://en.m.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.m.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.m.wikipedia.org/wiki/BSD_licenses

Share-alike

https://en.m.wikipedia.org/wiki/Share-alike

Weak copyleft licenses also obligate users to release their changes. However, this requirement
applies to a narrower set of code. The Mozilla Public License 2.0 and the CDDL (Common
Development and Distribution License) are examples of weak copyleft licenses that illustrate this
principle. If a user keeps the licensed code in separate files, they can then combine it with
additional and/or modified code to create an aggregate work. The newly added files may be
released under a different license or kept proprietary (closed-source). This is sometimes referred to
as file-based copyleft. Another example is the LGPL, which mainly applies to libraries. Any changes
to the library must be released under the same license, but a work that simply uses the library is
exempt.

Linux, on the other hand, provides the user with the option to use pre-compiled binaries or to
compile from source. This is much more powerful and fits the needs of a far broader spectrum of
users.

The fact that the software licenses explicitly permit redistribution, however, provides a basis for
larger-scale projects that collect the software produced by stand-alone projects and make it
available all at once in the form of a Linux distribution.

https://choosealicense.com/

Creative commons vs copy left/permissive

Creative Commons (CC) and open source licenses are both about sharing and usage rights, but
they differ in their primary focus and application. Creative Commons licenses are designed for
creative works like music, art, and writing, while open source licenses are primarily for software
code. Open source licenses allow for free use, modification, and redistribution of the software,
while CC licenses offer a broader range of options for sharing and using creative content.

https://www.mend.io/resources/blog/open-source-licenses-trends-and-predictions/

https://en.m.wikipedia.org/wiki/Share-alike
https://choosealicense.com/

https://en.m.wikipedia.org/wiki/Creative_Commons

https://creativecommons.org/share-your-work/

Copyleft Licenses

Counter_1 GPL
A strict copy left license that comes with many conditions
for usage within derivative software while providing express
patent allowance.

Counter_2 The Unlicense
Test

Counter_3 Mozilla Public License 2.0

https://en.m.wikipedia.org/wiki/GNU_Lesser_General_Public_
License

https://hub.subspace.services/uploads/images/gallery/2025-05/1000000486.png
https://en.m.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/share-your-work/
https://choosealicense.com/licenses/gpl-3.0/
https://choosealicense.com/licenses/unlicense/
https://choosealicense.com/licenses/mpl-2.0/
https://en.m.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.m.wikipedia.org/wiki/GNU_Lesser_General_Public_License

Permissive Licenses

Counter_1 Apache
A permissive license that allows that this software can be
incorporated into larger projects that can be released under
a different license.

Counter_2 MIT
This straightforward license only requires that the licensing
information is shown, otherwise the software can be used
freely for commercial or personal usage

Counter_3 BSD 3-Clause
https://en.m.wikipedia.org/wiki/BSD_licenses

During the early 1990s, the GNU Project proceeded until it neared completion – the only thing it
was missing was a kernel. This integral system handles all interactions between software and
hardware within a computer system. Without it, the operating system wouldn't even be able to
operate. Their free kernel – known as GNU Hurd – was still incomplete.

Linus Torvalds, operating independently of the GNU Project, created the first version of the Linux
kernel during his time as a computer science student. It was also released under the copy left
General Public License. GNU adopted Linux as it's kernel – which was now rapidly growing into a
community.

The resulting operating system is now generally referred to as Linux – even though there has been
a movement to change this to GNU/Linux. Linux was quickly adopted as the flag-ship project of the
newly forming Open-Source Movement.

Free – or Open?

https://choosealicense.com/licenses/apache-2.0/
https://choosealicense.com/licenses/mit/
https://choosealicense.com/licenses/bsd-3-clause-clear/
https://en.m.wikipedia.org/wiki/GNU_Hurd
https://en.m.wikipedia.org/wiki/Linus_Torvalds
https://en.m.wikipedia.org/wiki/Linux_kernel
https://en.m.wikipedia.org/wiki/Linux_kernel
https://en.m.wikipedia.org/wiki/Linux
https://en.m.wikipedia.org/wiki/GNU/Linux_naming_controversy
https://en.m.wikipedia.org/wiki/Open-source_software_movement

A collective of developers concluded that the Free Software Movement's social activism was not
appealing to companies. The group – later known as the Open Source Initiative – felt that more
emphasis needed to be placed on the business potential for openly sharing and collaborating on
source code.

https://en.m.wikipedia.org/wiki/The_Open_Source_Definition#Debian_Free_Software_Guidelines

Access to the source code:

2. Freedom of Modification:

3. Free Redistribution:

4. Permissive licence:

5. Community and Collaboration:

6. Transparency and security

The modular nature often allowed projects to work together regrdles of different philosophy.
Debian began to provide criteria for compatible license.

Free Software Movement vs Open Source Movement

https://e.foundation/what-is-the-difference-between-free-software-and-open-source-
software/

Philosophy and objectives:
 – Free Software : Focuses on the ethical and moral freedoms of users. The Free
Software Foundation (FSF) emphasises the user’s freedom to control the software and
co-operate with the community.
 – Open Source : Emphasises the practical benefits such as quality, flexibility and
innovation of sharing source code. The Open Source Initiative (OSI) focuses less on
ethical aspects and more on the development model.

1993: Over 100 developers work on the Linux kernel. With their assistance the kernel is adapted to
the GNU environment, which creates a large spectrum of application types for Linux. The oldest
currently existing Linux distribution, Slackware, is released for the first time. Later in the same

https://pld.cs.luc.edu/courses/412/mnotes/books/poss.pdf
https://pld.cs.luc.edu/courses/412/mnotes/books/poss.pdf
https://en.m.wikipedia.org/wiki/Open_Source_Initiative
https://en.m.wikipedia.org/wiki/Slackware

year, the Debian project is established. Today it is the largest community distribution.

https://lists.debian.org/debian-announce/1997/msg00017.html

Debian social contract

Debian believes the makers of a free software operating system should provide guarantees when a
user entrusts them with control of a computer. These guarantees include:

 Ensuring that the operating system remains open and free.
 Giving improvements back to the community that made the operating system possible.
 Not hiding problems with the software or organization.
 Staying focused on the users and the software that started the phenomenon.
 Making it possible for the software to be used with non-free software.

Dfsg

Debian Free Software Guidelines (DFSG)

Debian thought unity between free and open software alongside proprietary software was possible
- even preferable

In software development, Linus's law is the assertion that "given enough eyeballs, all bugs are
shallow". The law was formulated by Eric S. Raymond in his essay and book The Cathedral and the

Bazaar (1999), and was named in honor of Linus Torvalds.[1][2]

A more formal statement is: "Given a large enough beta-tester and co-developer base, almost
every problem will be characterized quickly and the fix obvious to someone." Presenting the code
to multiple developers with the purpose of reaching consensus about its acceptance is a simple
form of software reviewing. Researchers and practitioners have repeatedly shown the effectiveness
of reviewing processes in finding bugs and security issues.[3]

Community Security

https://en.m.wikipedia.org/wiki/Debian
https://lists.debian.org/debian-announce/1997/msg00017.html
https://en.m.wikipedia.org/wiki/Software_development
https://en.m.wikipedia.org/wiki/Software_bug
https://en.m.wikipedia.org/wiki/Eric_S._Raymond
https://en.m.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.m.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.m.wikipedia.org/wiki/Linus_Torvalds
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-1
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-2
https://en.m.wikipedia.org/wiki/Beta_test
https://en.m.wikipedia.org/wiki/Programmer
https://en.m.wikipedia.org/wiki/Software_review
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-3

The persistence of the Heartbleed security bug in a critical piece of code for two years has been
considered as a refutation of Raymond's dictum.[6][7][8][9] Larry Seltzer suspects that the
availability of source code may cause some developers and researchers to perform less extensive
tests than they would with closed source software, making it easier for bugs to remain.[9] In 2015,
the Linux Foundation's executive director Jim Zemlin argued that the complexity of modern
software has increased to such levels that specific resource allocation is desirable to improve its
security. Regarding some of 2014's largest global open source software vulnerabilities, he says, "In
these cases, the eyeballs weren't really looking".[8] Large scale experiments or peer-reviewed
surveys to test how well the mantra holds in practice have not been performed.[10]

Empirical support of the validity of Linus's law[11] was obtained by comparing popular and
unpopular projects of the same organization. Popular projects are projects with the top 5% of
GitHub stars (7,481 stars or more). Bug identification was measured using the corrective commit
probability, the ratio of commits determined to be related to fixing bugs. The analysis showed that
popular projects had a higher ratio of bug fixes (e.g., Google's popular projects had a 27% higher
bug fix rate than Google's less popular projects). Since it is unlikely that Google lowered its code
quality standards in more popular projects, this is an indication of increased bug detection
efficiency in popular projects.

GNU programs have been shown to be more reliable than their proprietary Unix counterparts.[32][33
]

Revision #25
Created 11 May 2025 04:59:52 by metaphorraccoon
Updated 31 May 2025 23:47:01 by metaphorraccoon

https://en.m.wikipedia.org/wiki/Heartbleed
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-6
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-7
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-Bugs_Aren't_Shallow-8
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-Heartbleed_matter-9
https://en.m.wikipedia.org/wiki/Closed_source
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-Heartbleed_matter-9
https://en.m.wikipedia.org/wiki/Linux_Foundation
https://en.m.wikipedia.org/wiki/Software_vulnerabilities
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-Bugs_Aren't_Shallow-8
https://en.m.wikipedia.org/wiki/Linus%27s_law#cite_note-10
https://en.m.wikipedia.org/wiki/GNU#cite_note-32
https://en.m.wikipedia.org/wiki/GNU#cite_note-33
https://en.m.wikipedia.org/wiki/GNU#cite_note-33

